Overview

Brought to you by YData

Dataset statistics

Number of variables20
Number of observations15000
Missing cells13500
Missing cells (%)4.5%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory10.3 MiB
Average record size in memory722.0 B

Variable types

Numeric7
Categorical10
Text3

Alerts

Income has 2250 (15.0%) missing values Missing
Credit Score has 2250 (15.0%) missing values Missing
Loan Amount has 2250 (15.0%) missing values Missing
Assets Value has 2250 (15.0%) missing values Missing
Number of Dependents has 2250 (15.0%) missing values Missing
Previous Defaults has 2250 (15.0%) missing values Missing
Debt-to-Income Ratio has unique values Unique
Years at Current Job has 727 (4.8%) zeros Zeros

Reproduction

Analysis started2025-02-21 22:05:15.953216
Analysis finished2025-02-21 22:05:29.856394
Duration13.9 seconds
Software versionydata-profiling vv4.12.2
Download configurationconfig.json

Variables

Age
Real number (ℝ)

Distinct52
Distinct (%)0.3%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean43.452667
Minimum18
Maximum69
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size117.3 KiB
2025-02-21T22:05:30.013079image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum18
5-th percentile20
Q131
median43
Q356
95-th percentile67
Maximum69
Range51
Interquartile range (IQR)25

Descriptive statistics

Standard deviation14.910732
Coefficient of variation (CV)0.34314883
Kurtosis-1.1850984
Mean43.452667
Median Absolute Deviation (MAD)13
Skewness0.013530622
Sum651790
Variance222.32991
MonotonicityNot monotonic
2025-02-21T22:05:30.263886image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
43 331
 
2.2%
34 323
 
2.2%
30 323
 
2.2%
40 319
 
2.1%
64 311
 
2.1%
45 311
 
2.1%
46 311
 
2.1%
62 304
 
2.0%
66 303
 
2.0%
33 302
 
2.0%
Other values (42) 11862
79.1%
ValueCountFrequency (%)
18 273
1.8%
19 285
1.9%
20 287
1.9%
21 291
1.9%
22 275
1.8%
23 285
1.9%
24 261
1.7%
25 291
1.9%
26 281
1.9%
27 284
1.9%
ValueCountFrequency (%)
69 282
1.9%
68 284
1.9%
67 265
1.8%
66 303
2.0%
65 285
1.9%
64 311
2.1%
63 255
1.7%
62 304
2.0%
61 299
2.0%
60 267
1.8%

Gender
Categorical

Distinct3
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size933.1 KiB
Non-binary
5059 
Female
4990 
Male
4951 

Length

Max length10
Median length6
Mean length6.6889333
Min length4

Characters and Unicode

Total characters100334
Distinct characters14
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowMale
2nd rowFemale
3rd rowNon-binary
4th rowMale
5th rowNon-binary

Common Values

ValueCountFrequency (%)
Non-binary 5059
33.7%
Female 4990
33.3%
Male 4951
33.0%

Length

2025-02-21T22:05:30.761217image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-02-21T22:05:30.879919image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
non-binary 5059
33.7%
female 4990
33.3%
male 4951
33.0%

Most occurring characters

ValueCountFrequency (%)
a 15000
15.0%
e 14931
14.9%
n 10118
10.1%
l 9941
9.9%
N 5059
 
5.0%
o 5059
 
5.0%
- 5059
 
5.0%
b 5059
 
5.0%
i 5059
 
5.0%
r 5059
 
5.0%
Other values (4) 19990
19.9%

Most occurring categories

ValueCountFrequency (%)
(unknown) 100334
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
a 15000
15.0%
e 14931
14.9%
n 10118
10.1%
l 9941
9.9%
N 5059
 
5.0%
o 5059
 
5.0%
- 5059
 
5.0%
b 5059
 
5.0%
i 5059
 
5.0%
r 5059
 
5.0%
Other values (4) 19990
19.9%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 100334
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
a 15000
15.0%
e 14931
14.9%
n 10118
10.1%
l 9941
9.9%
N 5059
 
5.0%
o 5059
 
5.0%
- 5059
 
5.0%
b 5059
 
5.0%
i 5059
 
5.0%
r 5059
 
5.0%
Other values (4) 19990
19.9%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 100334
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
a 15000
15.0%
e 14931
14.9%
n 10118
10.1%
l 9941
9.9%
N 5059
 
5.0%
o 5059
 
5.0%
- 5059
 
5.0%
b 5059
 
5.0%
i 5059
 
5.0%
r 5059
 
5.0%
Other values (4) 19990
19.9%

Education Level
Categorical

Distinct4
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size952.5 KiB
Bachelor's
3829 
High School
3774 
PhD
3760 
Master's
3637 

Length

Max length11
Median length10
Mean length8.012
Min length3

Characters and Unicode

Total characters120180
Distinct characters19
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowPhD
2nd rowBachelor's
3rd rowMaster's
4th rowBachelor's
5th rowBachelor's

Common Values

ValueCountFrequency (%)
Bachelor's 3829
25.5%
High School 3774
25.2%
PhD 3760
25.1%
Master's 3637
24.2%

Length

2025-02-21T22:05:31.043228image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-02-21T22:05:31.180963image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
bachelor's 3829
20.4%
high 3774
20.1%
school 3774
20.1%
phd 3760
20.0%
master's 3637
19.4%

Most occurring characters

ValueCountFrequency (%)
h 15137
12.6%
o 11377
 
9.5%
s 11103
 
9.2%
c 7603
 
6.3%
l 7603
 
6.3%
a 7466
 
6.2%
e 7466
 
6.2%
r 7466
 
6.2%
' 7466
 
6.2%
B 3829
 
3.2%
Other values (9) 33664
28.0%

Most occurring categories

ValueCountFrequency (%)
(unknown) 120180
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
h 15137
12.6%
o 11377
 
9.5%
s 11103
 
9.2%
c 7603
 
6.3%
l 7603
 
6.3%
a 7466
 
6.2%
e 7466
 
6.2%
r 7466
 
6.2%
' 7466
 
6.2%
B 3829
 
3.2%
Other values (9) 33664
28.0%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 120180
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
h 15137
12.6%
o 11377
 
9.5%
s 11103
 
9.2%
c 7603
 
6.3%
l 7603
 
6.3%
a 7466
 
6.2%
e 7466
 
6.2%
r 7466
 
6.2%
' 7466
 
6.2%
B 3829
 
3.2%
Other values (9) 33664
28.0%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 120180
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
h 15137
12.6%
o 11377
 
9.5%
s 11103
 
9.2%
c 7603
 
6.3%
l 7603
 
6.3%
a 7466
 
6.2%
e 7466
 
6.2%
r 7466
 
6.2%
' 7466
 
6.2%
B 3829
 
3.2%
Other values (9) 33664
28.0%

Marital Status
Categorical

Distinct4
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size937.7 KiB
Widowed
3893 
Divorced
3787 
Single
3697 
Married
3623 

Length

Max length8
Median length7
Mean length7.006
Min length6

Characters and Unicode

Total characters105090
Distinct characters16
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowDivorced
2nd rowWidowed
3rd rowSingle
4th rowSingle
5th rowWidowed

Common Values

ValueCountFrequency (%)
Widowed 3893
26.0%
Divorced 3787
25.2%
Single 3697
24.6%
Married 3623
24.2%

Length

2025-02-21T22:05:31.374597image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-02-21T22:05:31.513607image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
widowed 3893
26.0%
divorced 3787
25.2%
single 3697
24.6%
married 3623
24.2%

Most occurring characters

ValueCountFrequency (%)
d 15196
14.5%
i 15000
14.3%
e 15000
14.3%
r 11033
10.5%
o 7680
 
7.3%
W 3893
 
3.7%
w 3893
 
3.7%
D 3787
 
3.6%
v 3787
 
3.6%
c 3787
 
3.6%
Other values (6) 22034
21.0%

Most occurring categories

ValueCountFrequency (%)
(unknown) 105090
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
d 15196
14.5%
i 15000
14.3%
e 15000
14.3%
r 11033
10.5%
o 7680
 
7.3%
W 3893
 
3.7%
w 3893
 
3.7%
D 3787
 
3.6%
v 3787
 
3.6%
c 3787
 
3.6%
Other values (6) 22034
21.0%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 105090
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
d 15196
14.5%
i 15000
14.3%
e 15000
14.3%
r 11033
10.5%
o 7680
 
7.3%
W 3893
 
3.7%
w 3893
 
3.7%
D 3787
 
3.6%
v 3787
 
3.6%
c 3787
 
3.6%
Other values (6) 22034
21.0%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 105090
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
d 15196
14.5%
i 15000
14.3%
e 15000
14.3%
r 11033
10.5%
o 7680
 
7.3%
W 3893
 
3.7%
w 3893
 
3.7%
D 3787
 
3.6%
v 3787
 
3.6%
c 3787
 
3.6%
Other values (6) 22034
21.0%

Income
Real number (ℝ)

Missing 

Distinct11957
Distinct (%)93.8%
Missing2250
Missing (%)15.0%
Infinite0
Infinite (%)0.0%
Mean69933.399
Minimum20005
Maximum119997
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size117.3 KiB
2025-02-21T22:05:31.691565image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum20005
5-th percentile25149
Q144281.5
median69773
Q395922.75
95-th percentile115156.1
Maximum119997
Range99992
Interquartile range (IQR)51641.25

Descriptive statistics

Standard deviation29163.626
Coefficient of variation (CV)0.41702001
Kurtosis-1.2370618
Mean69933.399
Median Absolute Deviation (MAD)25792
Skewness0.010370211
Sum8.9165083 × 108
Variance8.5051709 × 108
MonotonicityNot monotonic
2025-02-21T22:05:31.915901image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
51174 3
 
< 0.1%
93511 3
 
< 0.1%
48390 3
 
< 0.1%
60888 3
 
< 0.1%
54890 3
 
< 0.1%
60533 3
 
< 0.1%
116185 3
 
< 0.1%
28301 3
 
< 0.1%
110027 3
 
< 0.1%
97195 3
 
< 0.1%
Other values (11947) 12720
84.8%
(Missing) 2250
 
15.0%
ValueCountFrequency (%)
20005 1
< 0.1%
20014 1
< 0.1%
20015 1
< 0.1%
20016 1
< 0.1%
20018 1
< 0.1%
20020 1
< 0.1%
20022 1
< 0.1%
20029 1
< 0.1%
20036 1
< 0.1%
20037 1
< 0.1%
ValueCountFrequency (%)
119997 1
< 0.1%
119992 1
< 0.1%
119987 1
< 0.1%
119978 1
< 0.1%
119969 1
< 0.1%
119961 1
< 0.1%
119958 1
< 0.1%
119937 1
< 0.1%
119926 1
< 0.1%
119919 1
< 0.1%

Credit Score
Real number (ℝ)

Missing 

Distinct200
Distinct (%)1.6%
Missing2250
Missing (%)15.0%
Infinite0
Infinite (%)0.0%
Mean699.1091
Minimum600
Maximum799
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size117.3 KiB
2025-02-21T22:05:32.136925image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum600
5-th percentile610
Q1650
median699
Q3748
95-th percentile789
Maximum799
Range199
Interquartile range (IQR)98

Descriptive statistics

Standard deviation57.229465
Coefficient of variation (CV)0.081860564
Kurtosis-1.1821024
Mean699.1091
Median Absolute Deviation (MAD)49
Skewness0.0064413389
Sum8913641
Variance3275.2116
MonotonicityNot monotonic
2025-02-21T22:05:32.363649image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
686 90
 
0.6%
742 86
 
0.6%
779 84
 
0.6%
682 83
 
0.6%
756 83
 
0.6%
681 83
 
0.6%
643 81
 
0.5%
636 80
 
0.5%
705 80
 
0.5%
694 79
 
0.5%
Other values (190) 11921
79.5%
(Missing) 2250
 
15.0%
ValueCountFrequency (%)
600 47
0.3%
601 54
0.4%
602 62
0.4%
603 62
0.4%
604 75
0.5%
605 67
0.4%
606 68
0.5%
607 50
0.3%
608 59
0.4%
609 63
0.4%
ValueCountFrequency (%)
799 67
0.4%
798 54
0.4%
797 51
0.3%
796 77
0.5%
795 60
0.4%
794 64
0.4%
793 61
0.4%
792 55
0.4%
791 50
0.3%
790 76
0.5%

Loan Amount
Real number (ℝ)

Missing 

Distinct11088
Distinct (%)87.0%
Missing2250
Missing (%)15.0%
Infinite0
Infinite (%)0.0%
Mean27450.011
Minimum5000
Maximum49998
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size117.3 KiB
2025-02-21T22:05:32.596062image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum5000
5-th percentile7215
Q116352.5
median27544
Q338547.5
95-th percentile47657.1
Maximum49998
Range44998
Interquartile range (IQR)22195

Descriptive statistics

Standard deviation12949.94
Coefficient of variation (CV)0.47176448
Kurtosis-1.1875131
Mean27450.011
Median Absolute Deviation (MAD)11110
Skewness-0.0014239163
Sum3.4998764 × 108
Variance1.6770095 × 108
MonotonicityNot monotonic
2025-02-21T22:05:32.804186image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
21659 5
 
< 0.1%
29107 5
 
< 0.1%
23083 5
 
< 0.1%
12375 4
 
< 0.1%
20698 4
 
< 0.1%
22031 4
 
< 0.1%
5207 4
 
< 0.1%
34317 4
 
< 0.1%
5785 4
 
< 0.1%
39421 4
 
< 0.1%
Other values (11078) 12707
84.7%
(Missing) 2250
 
15.0%
ValueCountFrequency (%)
5000 1
< 0.1%
5001 1
< 0.1%
5002 1
< 0.1%
5003 1
< 0.1%
5005 1
< 0.1%
5009 1
< 0.1%
5011 2
< 0.1%
5013 2
< 0.1%
5014 1
< 0.1%
5015 1
< 0.1%
ValueCountFrequency (%)
49998 1
< 0.1%
49995 1
< 0.1%
49994 1
< 0.1%
49978 1
< 0.1%
49974 1
< 0.1%
49962 2
< 0.1%
49955 1
< 0.1%
49953 1
< 0.1%
49946 1
< 0.1%
49944 1
< 0.1%

Loan Purpose
Categorical

Distinct4
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size923.0 KiB
Personal
3771 
Home
3766 
Business
3738 
Auto
3725 

Length

Max length8
Median length8
Mean length6.0024
Min length4

Characters and Unicode

Total characters90036
Distinct characters15
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowBusiness
2nd rowAuto
3rd rowHome
4th rowPersonal
5th rowPersonal

Common Values

ValueCountFrequency (%)
Personal 3771
25.1%
Home 3766
25.1%
Business 3738
24.9%
Auto 3725
24.8%

Length

2025-02-21T22:05:33.014765image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-02-21T22:05:33.147479image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
personal 3771
25.1%
home 3766
25.1%
business 3738
24.9%
auto 3725
24.8%

Most occurring characters

ValueCountFrequency (%)
s 14985
16.6%
e 11275
12.5%
o 11262
12.5%
n 7509
8.3%
u 7463
 
8.3%
P 3771
 
4.2%
r 3771
 
4.2%
a 3771
 
4.2%
l 3771
 
4.2%
H 3766
 
4.2%
Other values (5) 18692
20.8%

Most occurring categories

ValueCountFrequency (%)
(unknown) 90036
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
s 14985
16.6%
e 11275
12.5%
o 11262
12.5%
n 7509
8.3%
u 7463
 
8.3%
P 3771
 
4.2%
r 3771
 
4.2%
a 3771
 
4.2%
l 3771
 
4.2%
H 3766
 
4.2%
Other values (5) 18692
20.8%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 90036
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
s 14985
16.6%
e 11275
12.5%
o 11262
12.5%
n 7509
8.3%
u 7463
 
8.3%
P 3771
 
4.2%
r 3771
 
4.2%
a 3771
 
4.2%
l 3771
 
4.2%
H 3766
 
4.2%
Other values (5) 18692
20.8%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 90036
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
s 14985
16.6%
e 11275
12.5%
o 11262
12.5%
n 7509
8.3%
u 7463
 
8.3%
P 3771
 
4.2%
r 3771
 
4.2%
a 3771
 
4.2%
l 3771
 
4.2%
H 3766
 
4.2%
Other values (5) 18692
20.8%
Distinct3
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size986.4 KiB
Employed
5026 
Self-employed
4991 
Unemployed
4983 

Length

Max length13
Median length10
Mean length10.328067
Min length8

Characters and Unicode

Total characters154921
Distinct characters13
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowUnemployed
2nd rowEmployed
3rd rowEmployed
4th rowUnemployed
5th rowUnemployed

Common Values

ValueCountFrequency (%)
Employed 5026
33.5%
Self-employed 4991
33.3%
Unemployed 4983
33.2%

Length

2025-02-21T22:05:33.308088image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-02-21T22:05:33.418172image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
employed 5026
33.5%
self-employed 4991
33.3%
unemployed 4983
33.2%

Most occurring characters

ValueCountFrequency (%)
e 29965
19.3%
l 19991
12.9%
m 15000
9.7%
p 15000
9.7%
o 15000
9.7%
y 15000
9.7%
d 15000
9.7%
E 5026
 
3.2%
S 4991
 
3.2%
f 4991
 
3.2%
Other values (3) 14957
9.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 154921
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
e 29965
19.3%
l 19991
12.9%
m 15000
9.7%
p 15000
9.7%
o 15000
9.7%
y 15000
9.7%
d 15000
9.7%
E 5026
 
3.2%
S 4991
 
3.2%
f 4991
 
3.2%
Other values (3) 14957
9.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 154921
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
e 29965
19.3%
l 19991
12.9%
m 15000
9.7%
p 15000
9.7%
o 15000
9.7%
y 15000
9.7%
d 15000
9.7%
E 5026
 
3.2%
S 4991
 
3.2%
f 4991
 
3.2%
Other values (3) 14957
9.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 154921
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
e 29965
19.3%
l 19991
12.9%
m 15000
9.7%
p 15000
9.7%
o 15000
9.7%
y 15000
9.7%
d 15000
9.7%
E 5026
 
3.2%
S 4991
 
3.2%
f 4991
 
3.2%
Other values (3) 14957
9.7%

Years at Current Job
Real number (ℝ)

Zeros 

Distinct20
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean9.4762667
Minimum0
Maximum19
Zeros727
Zeros (%)4.8%
Negative0
Negative (%)0.0%
Memory size117.3 KiB
2025-02-21T22:05:33.572663image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile1
Q14
median9
Q315
95-th percentile18
Maximum19
Range19
Interquartile range (IQR)11

Descriptive statistics

Standard deviation5.7697073
Coefficient of variation (CV)0.60885869
Kurtosis-1.2143885
Mean9.4762667
Median Absolute Deviation (MAD)5
Skewness0.0091804098
Sum142144
Variance33.289523
MonotonicityNot monotonic
2025-02-21T22:05:33.724472image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=20)
ValueCountFrequency (%)
18 791
 
5.3%
5 776
 
5.2%
12 772
 
5.1%
1 768
 
5.1%
3 765
 
5.1%
4 762
 
5.1%
2 760
 
5.1%
16 755
 
5.0%
6 754
 
5.0%
8 753
 
5.0%
Other values (10) 7344
49.0%
ValueCountFrequency (%)
0 727
4.8%
1 768
5.1%
2 760
5.1%
3 765
5.1%
4 762
5.1%
5 776
5.2%
6 754
5.0%
7 724
4.8%
8 753
5.0%
9 743
5.0%
ValueCountFrequency (%)
19 717
4.8%
18 791
5.3%
17 753
5.0%
16 755
5.0%
15 744
5.0%
14 707
4.7%
13 745
5.0%
12 772
5.1%
11 741
4.9%
10 743
5.0%

Payment History
Categorical

Distinct4
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size912.2 KiB
Good
3822 
Excellent
3789 
Poor
3716 
Fair
3673 

Length

Max length9
Median length4
Mean length5.263
Min length4

Characters and Unicode

Total characters78945
Distinct characters15
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowPoor
2nd rowFair
3rd rowFair
4th rowExcellent
5th rowFair

Common Values

ValueCountFrequency (%)
Good 3822
25.5%
Excellent 3789
25.3%
Poor 3716
24.8%
Fair 3673
24.5%

Length

2025-02-21T22:05:33.891293image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-02-21T22:05:34.005134image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
good 3822
25.5%
excellent 3789
25.3%
poor 3716
24.8%
fair 3673
24.5%

Most occurring characters

ValueCountFrequency (%)
o 15076
19.1%
e 7578
9.6%
l 7578
9.6%
r 7389
 
9.4%
G 3822
 
4.8%
d 3822
 
4.8%
E 3789
 
4.8%
x 3789
 
4.8%
c 3789
 
4.8%
n 3789
 
4.8%
Other values (5) 18524
23.5%

Most occurring categories

ValueCountFrequency (%)
(unknown) 78945
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
o 15076
19.1%
e 7578
9.6%
l 7578
9.6%
r 7389
 
9.4%
G 3822
 
4.8%
d 3822
 
4.8%
E 3789
 
4.8%
x 3789
 
4.8%
c 3789
 
4.8%
n 3789
 
4.8%
Other values (5) 18524
23.5%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 78945
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
o 15076
19.1%
e 7578
9.6%
l 7578
9.6%
r 7389
 
9.4%
G 3822
 
4.8%
d 3822
 
4.8%
E 3789
 
4.8%
x 3789
 
4.8%
c 3789
 
4.8%
n 3789
 
4.8%
Other values (5) 18524
23.5%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 78945
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
o 15076
19.1%
e 7578
9.6%
l 7578
9.6%
r 7389
 
9.4%
G 3822
 
4.8%
d 3822
 
4.8%
E 3789
 
4.8%
x 3789
 
4.8%
c 3789
 
4.8%
n 3789
 
4.8%
Other values (5) 18524
23.5%

Debt-to-Income Ratio
Real number (ℝ)

Unique 

Distinct15000
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean0.35043806
Minimum0.10000422
Maximum0.59996985
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size117.3 KiB
2025-02-21T22:05:34.196507image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum0.10000422
5-th percentile0.12537067
Q10.22738648
median0.35075352
Q30.47609522
95-th percentile0.57428033
Maximum0.59996985
Range0.49996563
Interquartile range (IQR)0.24870874

Descriptive statistics

Standard deviation0.14391929
Coefficient of variation (CV)0.41068395
Kurtosis-1.1978789
Mean0.35043806
Median Absolute Deviation (MAD)0.12427928
Skewness-0.011435115
Sum5256.5709
Variance0.020712761
MonotonicityNot monotonic
2025-02-21T22:05:34.427022image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0.1543132963 1
 
< 0.1%
0.5328086865 1
 
< 0.1%
0.2406470849 1
 
< 0.1%
0.4163195588 1
 
< 0.1%
0.2759763504 1
 
< 0.1%
0.1562104852 1
 
< 0.1%
0.2850615978 1
 
< 0.1%
0.1941009127 1
 
< 0.1%
0.5072159853 1
 
< 0.1%
0.2640882466 1
 
< 0.1%
Other values (14990) 14990
99.9%
ValueCountFrequency (%)
0.1000042161 1
< 0.1%
0.1000234349 1
< 0.1%
0.1001350612 1
< 0.1%
0.1001616158 1
< 0.1%
0.1002870058 1
< 0.1%
0.1003148752 1
< 0.1%
0.1003470894 1
< 0.1%
0.1003823832 1
< 0.1%
0.1004792799 1
< 0.1%
0.1005107495 1
< 0.1%
ValueCountFrequency (%)
0.599969848 1
< 0.1%
0.5998844824 1
< 0.1%
0.5998795932 1
< 0.1%
0.5998588615 1
< 0.1%
0.5998449387 1
< 0.1%
0.5998247672 1
< 0.1%
0.5998094475 1
< 0.1%
0.5997805408 1
< 0.1%
0.5997803307 1
< 0.1%
0.5997275398 1
< 0.1%

Assets Value
Real number (ℝ)

Missing 

Distinct12470
Distinct (%)97.8%
Missing2250
Missing (%)15.0%
Infinite0
Infinite (%)0.0%
Mean159741.5
Minimum20055
Maximum299999
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size117.3 KiB
2025-02-21T22:05:34.635717image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum20055
5-th percentile33818.1
Q190635.25
median159362
Q3228707
95-th percentile285427.55
Maximum299999
Range279944
Interquartile range (IQR)138071.75

Descriptive statistics

Standard deviation80298.116
Coefficient of variation (CV)0.50267537
Kurtosis-1.1844727
Mean159741.5
Median Absolute Deviation (MAD)69001.5
Skewness0.0016292646
Sum2.0367041 × 109
Variance6.4477874 × 109
MonotonicityNot monotonic
2025-02-21T22:05:34.841189image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
69109 3
 
< 0.1%
139190 3
 
< 0.1%
128601 3
 
< 0.1%
264709 3
 
< 0.1%
176811 3
 
< 0.1%
172134 2
 
< 0.1%
48902 2
 
< 0.1%
203383 2
 
< 0.1%
253123 2
 
< 0.1%
253074 2
 
< 0.1%
Other values (12460) 12725
84.8%
(Missing) 2250
 
15.0%
ValueCountFrequency (%)
20055 1
< 0.1%
20104 1
< 0.1%
20125 1
< 0.1%
20163 1
< 0.1%
20169 1
< 0.1%
20179 1
< 0.1%
20193 1
< 0.1%
20199 2
< 0.1%
20203 1
< 0.1%
20233 1
< 0.1%
ValueCountFrequency (%)
299999 1
< 0.1%
299945 1
< 0.1%
299908 1
< 0.1%
299907 1
< 0.1%
299895 1
< 0.1%
299886 1
< 0.1%
299870 1
< 0.1%
299842 1
< 0.1%
299838 1
< 0.1%
299826 1
< 0.1%

Number of Dependents
Categorical

Missing 

Distinct5
Distinct (%)< 0.1%
Missing2250
Missing (%)15.0%
Memory size887.8 KiB
4.0
2613 
1.0
2590 
3.0
2588 
2.0
2516 
0.0
2443 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters38250
Distinct characters6
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0.0
2nd row0.0
3rd row3.0
4th row3.0
5th row4.0

Common Values

ValueCountFrequency (%)
4.0 2613
17.4%
1.0 2590
17.3%
3.0 2588
17.3%
2.0 2516
16.8%
0.0 2443
16.3%
(Missing) 2250
15.0%

Length

2025-02-21T22:05:35.043651image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-02-21T22:05:35.168009image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
4.0 2613
20.5%
1.0 2590
20.3%
3.0 2588
20.3%
2.0 2516
19.7%
0.0 2443
19.2%

Most occurring characters

ValueCountFrequency (%)
0 15193
39.7%
. 12750
33.3%
4 2613
 
6.8%
1 2590
 
6.8%
3 2588
 
6.8%
2 2516
 
6.6%

Most occurring categories

ValueCountFrequency (%)
(unknown) 38250
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
0 15193
39.7%
. 12750
33.3%
4 2613
 
6.8%
1 2590
 
6.8%
3 2588
 
6.8%
2 2516
 
6.6%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 38250
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
0 15193
39.7%
. 12750
33.3%
4 2613
 
6.8%
1 2590
 
6.8%
3 2588
 
6.8%
2 2516
 
6.6%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 38250
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
0 15193
39.7%
. 12750
33.3%
4 2613
 
6.8%
1 2590
 
6.8%
3 2588
 
6.8%
2 2516
 
6.6%

City
Text

Distinct10614
Distinct (%)70.8%
Missing0
Missing (%)0.0%
Memory size1011.2 KiB
2025-02-21T22:05:35.638936image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Length

Max length23
Median length20
Mean length12.020333
Min length6

Characters and Unicode

Total characters180305
Distinct characters53
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique8249 ?
Unique (%)55.0%

Sample

1st rowPort Elizabeth
2nd rowNorth Catherine
3rd rowSouth Scott
4th rowRobinhaven
5th rowNew Heather
ValueCountFrequency (%)
new 1127
 
5.0%
west 1070
 
4.8%
port 1062
 
4.7%
north 1056
 
4.7%
south 1050
 
4.7%
east 1038
 
4.6%
lake 1036
 
4.6%
michael 93
 
0.4%
christopher 61
 
0.3%
jennifer 57
 
0.3%
Other values (7339) 14789
65.9%
2025-02-21T22:05:36.432424image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
e 17515
 
9.7%
t 14150
 
7.8%
r 14038
 
7.8%
a 13864
 
7.7%
o 12290
 
6.8%
h 10123
 
5.6%
n 9830
 
5.5%
i 8843
 
4.9%
s 8557
 
4.7%
7439
 
4.1%
Other values (43) 63656
35.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 180305
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
e 17515
 
9.7%
t 14150
 
7.8%
r 14038
 
7.8%
a 13864
 
7.7%
o 12290
 
6.8%
h 10123
 
5.6%
n 9830
 
5.5%
i 8843
 
4.9%
s 8557
 
4.7%
7439
 
4.1%
Other values (43) 63656
35.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 180305
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
e 17515
 
9.7%
t 14150
 
7.8%
r 14038
 
7.8%
a 13864
 
7.7%
o 12290
 
6.8%
h 10123
 
5.6%
n 9830
 
5.5%
i 8843
 
4.9%
s 8557
 
4.7%
7439
 
4.1%
Other values (43) 63656
35.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 180305
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
e 17515
 
9.7%
t 14150
 
7.8%
r 14038
 
7.8%
a 13864
 
7.7%
o 12290
 
6.8%
h 10123
 
5.6%
n 9830
 
5.5%
i 8843
 
4.9%
s 8557
 
4.7%
7439
 
4.1%
Other values (43) 63656
35.3%

State
Text

Distinct59
Distinct (%)0.4%
Missing0
Missing (%)0.0%
Memory size864.4 KiB
2025-02-21T22:05:36.791673image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Length

Max length2
Median length2
Mean length2
Min length2

Characters and Unicode

Total characters30000
Distinct characters24
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowAS
2nd rowOH
3rd rowOK
4th rowPR
5th rowIL
ValueCountFrequency (%)
co 282
 
1.9%
ky 279
 
1.9%
pw 279
 
1.9%
de 277
 
1.8%
mp 277
 
1.8%
wy 276
 
1.8%
mo 275
 
1.8%
ct 275
 
1.8%
vi 275
 
1.8%
tx 273
 
1.8%
Other values (49) 12232
81.5%
2025-02-21T22:05:37.489316image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
A 3215
 
10.7%
M 3057
 
10.2%
N 2764
 
9.2%
I 2248
 
7.5%
C 1586
 
5.3%
T 1582
 
5.3%
D 1503
 
5.0%
O 1303
 
4.3%
V 1298
 
4.3%
S 1281
 
4.3%
Other values (14) 10163
33.9%

Most occurring categories

ValueCountFrequency (%)
(unknown) 30000
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
A 3215
 
10.7%
M 3057
 
10.2%
N 2764
 
9.2%
I 2248
 
7.5%
C 1586
 
5.3%
T 1582
 
5.3%
D 1503
 
5.0%
O 1303
 
4.3%
V 1298
 
4.3%
S 1281
 
4.3%
Other values (14) 10163
33.9%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 30000
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
A 3215
 
10.7%
M 3057
 
10.2%
N 2764
 
9.2%
I 2248
 
7.5%
C 1586
 
5.3%
T 1582
 
5.3%
D 1503
 
5.0%
O 1303
 
4.3%
V 1298
 
4.3%
S 1281
 
4.3%
Other values (14) 10163
33.9%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 30000
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
A 3215
 
10.7%
M 3057
 
10.2%
N 2764
 
9.2%
I 2248
 
7.5%
C 1586
 
5.3%
T 1582
 
5.3%
D 1503
 
5.0%
O 1303
 
4.3%
V 1298
 
4.3%
S 1281
 
4.3%
Other values (14) 10163
33.9%
Distinct243
Distinct (%)1.6%
Missing0
Missing (%)0.0%
Memory size992.0 KiB
2025-02-21T22:05:37.931352image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Length

Max length51
Median length33
Mean length10.710533
Min length4

Characters and Unicode

Total characters160658
Distinct characters59
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowCyprus
2nd rowTurkmenistan
3rd rowLuxembourg
4th rowUganda
5th rowNamibia
ValueCountFrequency (%)
islands 912
 
3.9%
and 699
 
3.0%
republic 434
 
1.9%
saint 431
 
1.8%
united 314
 
1.3%
south 266
 
1.1%
island 248
 
1.1%
arab 202
 
0.9%
french 197
 
0.8%
territory 194
 
0.8%
Other values (298) 19428
83.3%
2025-02-21T22:05:38.491931image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
a 22018
 
13.7%
n 12856
 
8.0%
i 12793
 
8.0%
e 11368
 
7.1%
r 9326
 
5.8%
8325
 
5.2%
o 8129
 
5.1%
t 6738
 
4.2%
l 6568
 
4.1%
s 6235
 
3.9%
Other values (49) 56302
35.0%

Most occurring categories

ValueCountFrequency (%)
(unknown) 160658
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
a 22018
 
13.7%
n 12856
 
8.0%
i 12793
 
8.0%
e 11368
 
7.1%
r 9326
 
5.8%
8325
 
5.2%
o 8129
 
5.1%
t 6738
 
4.2%
l 6568
 
4.1%
s 6235
 
3.9%
Other values (49) 56302
35.0%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 160658
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
a 22018
 
13.7%
n 12856
 
8.0%
i 12793
 
8.0%
e 11368
 
7.1%
r 9326
 
5.8%
8325
 
5.2%
o 8129
 
5.1%
t 6738
 
4.2%
l 6568
 
4.1%
s 6235
 
3.9%
Other values (49) 56302
35.0%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 160658
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
a 22018
 
13.7%
n 12856
 
8.0%
i 12793
 
8.0%
e 11368
 
7.1%
r 9326
 
5.8%
8325
 
5.2%
o 8129
 
5.1%
t 6738
 
4.2%
l 6568
 
4.1%
s 6235
 
3.9%
Other values (49) 56302
35.0%

Previous Defaults
Categorical

Missing 

Distinct5
Distinct (%)< 0.1%
Missing2250
Missing (%)15.0%
Memory size887.8 KiB
0.0
2571 
1.0
2569 
4.0
2564 
2.0
2559 
3.0
2487 

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters38250
Distinct characters6
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row2.0
2nd row3.0
3rd row3.0
4th row4.0
5th row3.0

Common Values

ValueCountFrequency (%)
0.0 2571
17.1%
1.0 2569
17.1%
4.0 2564
17.1%
2.0 2559
17.1%
3.0 2487
16.6%
(Missing) 2250
15.0%

Length

2025-02-21T22:05:38.635116image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-02-21T22:05:38.779119image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
0.0 2571
20.2%
1.0 2569
20.1%
4.0 2564
20.1%
2.0 2559
20.1%
3.0 2487
19.5%

Most occurring characters

ValueCountFrequency (%)
0 15321
40.1%
. 12750
33.3%
1 2569
 
6.7%
4 2564
 
6.7%
2 2559
 
6.7%
3 2487
 
6.5%

Most occurring categories

ValueCountFrequency (%)
(unknown) 38250
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
0 15321
40.1%
. 12750
33.3%
1 2569
 
6.7%
4 2564
 
6.7%
2 2559
 
6.7%
3 2487
 
6.5%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 38250
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
0 15321
40.1%
. 12750
33.3%
1 2569
 
6.7%
4 2564
 
6.7%
2 2559
 
6.7%
3 2487
 
6.5%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 38250
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
0 15321
40.1%
. 12750
33.3%
1 2569
 
6.7%
4 2564
 
6.7%
2 2559
 
6.7%
3 2487
 
6.5%
Distinct3
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size849.7 KiB
1
5067 
0
4978 
2
4955 

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters15000
Distinct characters3
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row2
2nd row2
3rd row2
4th row2
5th row1

Common Values

ValueCountFrequency (%)
1 5067
33.8%
0 4978
33.2%
2 4955
33.0%

Length

2025-02-21T22:05:38.944739image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-02-21T22:05:39.052896image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
1 5067
33.8%
0 4978
33.2%
2 4955
33.0%

Most occurring characters

ValueCountFrequency (%)
1 5067
33.8%
0 4978
33.2%
2 4955
33.0%

Most occurring categories

ValueCountFrequency (%)
(unknown) 15000
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1 5067
33.8%
0 4978
33.2%
2 4955
33.0%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 15000
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1 5067
33.8%
0 4978
33.2%
2 4955
33.0%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 15000
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1 5067
33.8%
0 4978
33.2%
2 4955
33.0%

Risk Rating
Categorical

Distinct3
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size893.7 KiB
Low
9000 
Medium
4500 
High
1500 

Length

Max length6
Median length3
Mean length4
Min length3

Characters and Unicode

Total characters60000
Distinct characters12
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowLow
2nd rowMedium
3rd rowMedium
4th rowMedium
5th rowLow

Common Values

ValueCountFrequency (%)
Low 9000
60.0%
Medium 4500
30.0%
High 1500
 
10.0%

Length

2025-02-21T22:05:39.197228image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-02-21T22:05:39.301375image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
low 9000
60.0%
medium 4500
30.0%
high 1500
 
10.0%

Most occurring characters

ValueCountFrequency (%)
L 9000
15.0%
o 9000
15.0%
w 9000
15.0%
i 6000
10.0%
M 4500
7.5%
e 4500
7.5%
d 4500
7.5%
u 4500
7.5%
m 4500
7.5%
H 1500
 
2.5%
Other values (2) 3000
 
5.0%

Most occurring categories

ValueCountFrequency (%)
(unknown) 60000
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
L 9000
15.0%
o 9000
15.0%
w 9000
15.0%
i 6000
10.0%
M 4500
7.5%
e 4500
7.5%
d 4500
7.5%
u 4500
7.5%
m 4500
7.5%
H 1500
 
2.5%
Other values (2) 3000
 
5.0%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 60000
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
L 9000
15.0%
o 9000
15.0%
w 9000
15.0%
i 6000
10.0%
M 4500
7.5%
e 4500
7.5%
d 4500
7.5%
u 4500
7.5%
m 4500
7.5%
H 1500
 
2.5%
Other values (2) 3000
 
5.0%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 60000
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
L 9000
15.0%
o 9000
15.0%
w 9000
15.0%
i 6000
10.0%
M 4500
7.5%
e 4500
7.5%
d 4500
7.5%
u 4500
7.5%
m 4500
7.5%
H 1500
 
2.5%
Other values (2) 3000
 
5.0%

Interactions

2025-02-21T22:05:27.599070image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:18.589388image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:19.911914image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:21.244354image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:23.094581image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:24.917929image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:26.348124image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:27.760416image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:18.866438image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:20.120719image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:21.430690image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:23.379818image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:25.226021image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:26.505674image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:27.927288image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:19.045416image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:20.295788image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:21.609167image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:23.662119image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:25.435357image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:26.678114image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:28.120100image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:19.225446image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:20.474950image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:21.796726image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:23.964162image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:25.614151image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:26.863559image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:28.291397image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:19.396295image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:20.642593image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:22.002605image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:24.230970image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:25.775025image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:27.065834image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:28.473977image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:19.570784image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:20.829903image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:22.243672image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:24.519448image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:25.968456image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:27.257211image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:28.643050image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:19.733303image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:21.062796image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:22.484222image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:24.697587image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:26.137726image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-02-21T22:05:27.429295image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Correlations

2025-02-21T22:05:39.441236image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
AgeAssets ValueCredit ScoreDebt-to-Income RatioEducation LevelEmployment StatusGenderIncomeLoan AmountLoan PurposeMarital StatusMarital Status ChangeNumber of DependentsPayment HistoryPrevious DefaultsRisk RatingYears at Current Job
Age1.000-0.008-0.000-0.0020.0050.0040.000-0.001-0.0050.0000.0020.0290.0000.0000.0110.000-0.008
Assets Value-0.0081.0000.0140.0180.0070.0180.013-0.009-0.0120.0030.0100.0190.0000.0060.0000.000-0.007
Credit Score-0.0000.0141.0000.0090.0170.0030.0000.013-0.0140.0000.0000.0000.0000.0150.0180.020-0.002
Debt-to-Income Ratio-0.0020.0180.0091.0000.0000.0000.000-0.0010.0280.0000.0000.0050.0150.0180.0000.0080.009
Education Level0.0050.0070.0170.0001.0000.0000.0100.0000.0000.0060.0000.0070.0070.0000.0200.0000.000
Employment Status0.0040.0180.0030.0000.0001.0000.0000.0090.0000.0000.0000.0000.0000.0000.0000.0060.006
Gender0.0000.0130.0000.0000.0100.0001.0000.0110.0000.0000.0000.0000.0000.0000.0090.0110.021
Income-0.001-0.0090.013-0.0010.0000.0090.0111.000-0.0080.0090.0000.0000.0000.0000.0000.0210.008
Loan Amount-0.005-0.012-0.0140.0280.0000.0000.000-0.0081.0000.0170.0000.0250.0120.0000.0100.000-0.006
Loan Purpose0.0000.0030.0000.0000.0060.0000.0000.0090.0171.0000.0000.0000.0190.0070.0070.0090.000
Marital Status0.0020.0100.0000.0000.0000.0000.0000.0000.0000.0001.0000.0000.0000.0060.0000.0000.006
Marital Status Change0.0290.0190.0000.0050.0070.0000.0000.0000.0250.0000.0001.0000.0090.0000.0000.0180.015
Number of Dependents0.0000.0000.0000.0150.0070.0000.0000.0000.0120.0190.0000.0091.0000.0090.0000.0000.000
Payment History0.0000.0060.0150.0180.0000.0000.0000.0000.0000.0070.0060.0000.0091.0000.0070.0000.000
Previous Defaults0.0110.0000.0180.0000.0200.0000.0090.0000.0100.0070.0000.0000.0000.0071.0000.0130.000
Risk Rating0.0000.0000.0200.0080.0000.0060.0110.0210.0000.0090.0000.0180.0000.0000.0131.0000.005
Years at Current Job-0.008-0.007-0.0020.0090.0000.0060.0210.008-0.0060.0000.0060.0150.0000.0000.0000.0051.000

Missing values

2025-02-21T22:05:28.929317image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
A simple visualization of nullity by column.
2025-02-21T22:05:29.273021image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.
2025-02-21T22:05:29.701268image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
The correlation heatmap measures nullity correlation: how strongly the presence or absence of one variable affects the presence of another.

Sample

AgeGenderEducation LevelMarital StatusIncomeCredit ScoreLoan AmountLoan PurposeEmployment StatusYears at Current JobPayment HistoryDebt-to-Income RatioAssets ValueNumber of DependentsCityStateCountryPrevious DefaultsMarital Status ChangeRisk Rating
049MalePhDDivorced72799.0688.045713.0BusinessUnemployed19Poor0.154313120228.00.0Port ElizabethASCyprus2.02Low
157FemaleBachelor'sWidowedNaN690.033835.0AutoEmployed6Fair0.14892055849.00.0North CatherineOHTurkmenistan3.02Medium
221Non-binaryMaster'sSingle55687.0600.036623.0HomeEmployed8Fair0.362398180700.03.0South ScottOKLuxembourg3.02Medium
359MaleBachelor'sSingle26508.0622.026541.0PersonalUnemployed2Excellent0.454964157319.03.0RobinhavenPRUganda4.02Medium
425Non-binaryBachelor'sWidowed49427.0766.036528.0PersonalUnemployed10Fair0.143242287140.0NaNNew HeatherILNamibia3.01Low
530Non-binaryPhDDivorcedNaN717.015613.0BusinessUnemployed5Fair0.295984NaN4.0BrianlandTNIceland3.01Medium
631Non-binaryMaster'sWidowed45280.0672.06553.0PersonalSelf-employed1Good0.378890NaNNaNWest LindaviewMDBouvet Island (Bouvetoya)0.01Low
718MaleBachelor'sWidowed93678.0NaNNaNBusinessUnemployed10Poor0.396636246597.01.0MelissahavenMAHonduras1.01Low
832Non-binaryBachelor'sWidowed20205.0710.0NaNAutoUnemployed4Fair0.335965227599.00.0North BeverlyDCPitcairn Islands4.02Low
955MaleBachelor'sMarried32190.0600.029918.0PersonalSelf-employed5Excellent0.484333130507.04.0DavidstadVTThailandNaN2Low
AgeGenderEducation LevelMarital StatusIncomeCredit ScoreLoan AmountLoan PurposeEmployment StatusYears at Current JobPayment HistoryDebt-to-Income RatioAssets ValueNumber of DependentsCityStateCountryPrevious DefaultsMarital Status ChangeRisk Rating
1499043Non-binaryBachelor'sWidowedNaNNaN18138.0PersonalSelf-employed12Fair0.285903137146.02.0RoytownMIFalkland Islands (Malvinas)0.00Medium
1499143MaleBachelor'sMarried110352.0662.036790.0BusinessSelf-employed13Good0.474802203890.02.0New CatherineRICambodia2.01Low
1499242FemalePhDSingle86480.0676.035735.0HomeEmployed12Excellent0.52851452746.0NaNDebrahavenILOman3.02Low
1499332FemalePhDMarried108293.0649.027013.0BusinessSelf-employed8Excellent0.362077157700.02.0JennifersideORComorosNaN2Low
1499440MaleHigh SchoolMarried43655.0614.034565.0HomeUnemployed11Poor0.39990132179.04.0CurtismouthIAUzbekistan1.01Low
1499523Non-binaryBachelor'sWidowed48088.0609.026187.0HomeSelf-employed2Fair0.317633NaN4.0SusanstadTNDjibouti2.00Low
1499656MalePhDSingle107193.0700.035111.0AutoSelf-employed10Fair0.15512679102.0NaNPort HeatherWACongo0.00Medium
1499729Non-binaryPhDMarried46250.0642.044369.0HomeUnemployed19Excellent0.593999196930.04.0South MorganchesterLAPalau2.01High
1499853Non-binaryPhDDivorced40180.0638.032752.0HomeSelf-employed12Excellent0.478035276060.0NaNPort WayneAKRwanda0.02High
1499924Non-binaryBachelor'sWidowedNaN765.0NaNPersonalSelf-employed18Excellent0.11608371699.03.0South StacyWASaint Pierre and Miquelon3.02Low